
Re-Wiring Enterprise
IT With DevOps
Nico de Wet, MSc nico@nicodewet.com

October 13, 2016

Figure 1: Mental Fortitude Required.

D
evOps FROM scratch1 within siloed enter-
prise IT is anywhere from hard to exception-
ally hard. As a practitioner your commitment

to the underlying principles and practices must be to-
tal. With overhead political fire, a starting Joel Test
score of 2 and enterprise IT silos you must succeed.

This article chronicles an enterprise experience
of introducing DevOps and continuous deployment
practices into, from a seasoned DevOps practitioners
perspective, a virtual Ground Zero2 with overhead
tracer fire. In the spirit of No More Consultants[1]
this was done in-house at the kiwi enterprise Jukt
Micronics[5] by a committed team of veterans and
DevOps newcomers. This article details the technical,

1In this context FROM scratch is a turn of phrase also refer-
ring to the scratch Docker base image.

2The World Trade Center site after the September 11 attacks.

on-boarding and political lessons learned during the
first eight months of the evolution of the containerised
continuous delivery pipeline at Jukt.

Although DevOps has multiple goals, our key mea-
surable goal at Jukt was the ability to go from commit
to production in the order of minutes while ensuring
high quality. In this regard, in this article I steer clear
of only focussing on the technical lessons learned in
achieving the cited delivery goal. Rather, a key focus
is on steps taken to cultivate a high performance
culture and a total commitment to tried and tested
practices - with container technology and open source
in general as catalyst and accelerant respectively.

Moreover in terms of culture, in this article I
propose that the cultural changes put forward in
No.8 Re-Wired [2] directly apply to Re-Wiring Enter-
prise IT with DevOps. Furthermore, I propose using
the No.8 Re-Wired DevOps ScorecardTM as a
means of incrementally measuring cultural progress.

1 Defining DevOps

In many ways the term DevOps is unfortunate in
that to the uninitiated it may mean development
and operations working together. The latter notion
is true but also overly simplistic. DevOps refers to
a range of mature software development and opera-
tional practices.

Some assume that DevOps refers to breaking down
enterprise silos and that a startup implies DevOps
due to low staff numbers. The latter is not true
and also overoptimistic. With the perfect storm of

Page 1 of 9

http://www.joelonsoftware.com/articles/fog0000000043.html
https://hub.docker.com/_/scratch/


personalities silos can and do exist with small staff
numbers, even in startups. In terms of further confu-
sion, some assume the scope of DevOps is limited to
automatically standing up dev and test environments,
this is also not necessarily true.

Although an in-depth coverage of DevOps is be-
yond the scope of this article, my coverage of the
Jukt DevOps delivery pipeline and its constituent
components will cover some foundational practices
such as continuous integration.

In terms of defining DevOps, I borrow the SEI’s
definition sourced from the book DevOps: A Software
Architect’s Perspective[4]:

DevOps is a set of practices intended to re-
duce the time between committing a change
to a system and the change being placed
into normal production, while ensuring high
quality.

Some key summary points that are made[4] to
elaborate on the above:

• The quality of a deployed change to a system
in terms of code, suitability of use by various
stakeholders, various ”ilities” (e.g. reliability) is
important and the definition does not focus on
how these are achieved.

• The definition requires the delivery mechanism
to be of high quality. In other words, the quality
of every part of the pipeline matters.

• Two time periods are important, the first starts
when a developer makes a commit and the
changes flows through the delivery pipeline to
production. The second time period is the time
between deployment into production and subse-
quently considering the change as a portion of
normal production (this time period accounts for
live testing and close monitoring of the change
in production).

• The definition is goal oriented. The form of
practices and tools are not specified.

• The goals in the definition does not restrict
the scope of DevOps practices to testing and
deployment. The operations perspective and
monitoring practices are naturally also within
scope.

2 No. 8 Re-Wired Enterprise IT with
DevOps

In No.8 Re-Wired [2], Downs and Bridges celebrate
the inventions and ingenuity of kiwis. They also
put forward a set of cultural changes to truly take
New Zealand innovation, both within and outside of
enterprises, to global success.

I believe and propose that the cultural changes
put forward in No. 8 Re-Wired[2] directly apply
to Re-wiring Enterprise IT with DevOps. Moreover,
without diving into technical matters the FROM and
TO behaviours in Table 1 directly apply to enterprise
IT silos.

The No.8 Re-Wired DevOps ScorecardTM pre-
sented in Table 2 is my proposal for an internal
self-assessment tool. When starting up DevOps in
a given enterprise, or re-igniting DevOps for that
matter, each member of what you believe to be your
DevOps team fills in the form before kicking it off
and at chosen intervals.

It is worth noting that it is entirely possible that
your self-assessment exercise will in itself end up be-
ing flawed if a significant portion of your pipeline to
production has been siloed off. Take a hard honest
look at your pipeline. It may well be that in a given
enterprise you will be limited to subset of mature en-
gineering practices that formulated DevOps because
silos cannot be broken down.

3 Ground Zero

In terms of the starting point, I use the Ground Zero
analogy to contrast where one may have wanted to
get to and where one may be at the start.

Informally speaking, as a software engineer Ground
Zero represents rappelling down into Mogadishu in

Page 2 of 9



Table 1: The No. 8 Wire Paradigm[2]

FROM TO

Alone in a shed Collaborating with peers

Making a solution to solve my own problem Understanding the customer’s prob-
lem

Making do with what’s at hand Using the best possible technology
from around the world

Distrusting others Sharing information with others and
mutually benefitting

Doing it all myself Working with specialists in design,
marketing, production, etc.

Holding onto the invention Letting the invention go out to be
criticised, commented on and added
to by others

Making it ’good enough’ Perfecting the design and function-
ality

Standing apart from the world Being open to global cooperation

Table 2: No.8 Re-Wired DevOps ScorecardTM

FROM TO

Alone in an IT silo Collaborating with DevOps peers

Making a solution to solve my own silo’s problem Understanding the customer’s prob-
lem with DevOps practices as the
means

Making do with what’s at hand Using the best possible technology
from around the world

Distrusting other silos Sharing information with others and
mutually benefitting

Doing it all myself Working with specialists in design,
marketing, production, etc.

Holding onto the invention within my silo Letting the invention go out to be
criticised, commented on and added
to by others

Making it ’good enough’ Perfecting the design and function-
ality

Standing apart from the business and other IT silos Being open to enterprise-wide coop-
eration

Page 3 of 9



Figure 2: Rappel Down To Ground Zero

the seminal film Blackhawk Down. The only differ-
ence is that the engineer would be rappelling down
with a MacBook as your assault rifle.

Consider the following scenario, to set the scene,
which may play itself out in IT in any given enterprise
and in any given country.

• In-house developers not furnished with developer
specced machines. Forced to bring in personal
resources where unavailable in the enterprise.

• Continuous integration practices generally not
followed or unknown.

• DevOps not understood top down in IT before
launching it - siloes firmly entrenched even after
launching DevOps.

• Open hostility to in-house developers common-
place within the enterprise and political drives
to oust linux.

• In-house developers faced with an enterprise IT
developer stigma in industry.

• Significant portion of development are contrac-
tors with less skin in the game by definition.

• IT in the midst of restructuring.

• Principle of least privilege applied universally,
even within DMZ.

• Software architecture discipline poorly under-
stood.

• Significant amounts of shadow IT when it comes
to development.

• Agile projects represent cargo cult software
engineering[3].

• Tertiary IT or Computer Science degrees rare,
having absolutely no IT qualification common-
place.

• Near universal waterfall experience and no agile
experience.

• Operations side of IT uncelebrated.

• Deployment to UAT and/or PROD taking days
to weeks common.

• Development operating system and runtime
never matches production.

• The ratio of developer to other IT roles may be
in the region of 1 to 20.

• Automated regression testing suites generally
unheard of.

• Active resistance to containerisation technology
and in particular Docker in parts of the enter-
prise.

• Millions of dollars spent on projects but almost
nothing allocated for maintenance nor training.

• The desire to hide and bury mistakes.

So, having read that list, you may be wondering,
is this not a certain death scenario? Surely DevOps
will never work no matter how talented the software
engineers may be.

Well, in our case we had an influential leader with
thirty years of in-the-trenches experience, still ac-
tively coding and a published, from the trenches,
agile book to boot. This is a game changer, and
having the backing of a respected and supportive
veteran is why one would rappel down.

There is one more reason why you’d do it - because
if you don’t who will? You have to have skin in
the game to truly be committed to fixing serious
problems.

4 Starting Culture - No. 8 Re-wired
Scorecard

I retrospectively completed the No.8 Re-Wired De-
vOps ScorecardTM for Jukt and was able to do so
given that I had lead the implementation of DevOps
from inception. My retrospective score, illustrated in
Table 3, shows a woeful score of 0.5 out of 8 which in
itself represents the degree of opportunity for positive
change.

Page 4 of 9



Table 3: No.8 Re-Wired DevOps ScorecardTM - Starting Culture At Jukt Micronics

FROM TO SCORE

Alone in an IT silo Collaborating with DevOps peers 0

Making a solution to solve my own silo’s problem Understanding the customer’s prob-
lem with DevOps practices as the
means

0

Making do with what’s at hand Using the best possible technology
from around the world

0

Distrusting other silos Sharing information with others and
mutually benefitting

0

Doing it all myself Working with specialists in design,
marketing, production, etc.

0

Holding onto the invention within my silo Letting the invention go out to be
criticised, commented on and added
to by others

0.25

Making it ’good enough’ Perfecting the design and function-
ality

0.25

Standing apart from the business and other IT silos Being open to enterprise-wide coop-
eration

0

5 DevOps Pipeline

5.1 Pipeline Mark 1 - The Show And Tell
Bridgehead

When we kicked off DevOps at Jukt the first objective
was to establish the pipeline all the way to the show
and tell (SNT) environment, and no further. This
was our Mark 1 pipeline which is a bridgehead in
terms of our overall goal.

The reason for the limitation of scope when it
came to the first pipeline was the priority of demon-
strating capability internally within IT as well as
to business stakeholders. Arguably by focussing on
SNT, rather than taking a DevOps pipeline all the
way to production, as per our definition of DevOps,
this in itself does not constitute DevOps, but that is
fine.

Another reason for the limitation of scope is be-
cause just establishing the bridgehead may be a
fair challenge in particularly constrained IT environ-
ments. For example, at Jukt just getting a handful
of linux based virtual machines provisioned along
with root access to each was a significant challenge.
In addition, not all concerned were familiar with
key technologies and automation to the extent that
we aimed to introduce and so we had to allow for
onboarding time and effort.

In terms of further limitations of scope, we did not
use an Artifact Repository (which happened to be
Nexus 3) when focussed on SNT and only gradually

increased the maturity of the pipeline. In the very
first edition of the pipeline we copied snapshot Docker
images onto the target environment, rather then
standing up a private registry.

5.2 Pipeline Mark 2 - Onto Production
Under Fire

The pathway onto production was the most difficult,
not technically, rather in terms of dealing with con-
straints imposed by silos. The bulk of our pipeline
was still siloed off and we had to gradually gain the
access3 required for automated deployment from our
central continuous integration server.

In terms of production, our pipeline never went
further than pulling, stopping and starting individual
containers with no host level access other than man-
aging images and containers. The complete pipeline
is illustrated in Figure 3.

The gains made by using containers were without
a doubt fundamental. In retrospect the restriction
of only ever being able to deploy containers forced
us to hone our core image management and Docker
Engine skills. Moreover keeping the pipeline clean
of garbage and nurturing our two Docker registries
remained as challenges within our simple pipeline.

The above said in terms of fundamental gains, it

3These includes getting an operational/infrastructure team to
allow specific sudoer commands (docker engine commands),
opening specific firewall ports and more.

Page 5 of 9



Version Control 
(e.g. Git)

Artifact Repository
(Fine and Course Grained 

Private Repos e.g. Nexus 3)

Continous Integration 
Server

(e.g. Jenkins)

Upstream Fine 
Grained 

Repository
(e.g. Maven Central, 

NuGet Gallery)

Upstream Course 
Grained 

Repository
(e.g. Docker Hub)

62

3, 7

1

54 8 9

Show and Tell
Environment
(Declaratively 

specified with e.g. 
Docker Compose)

10

TIP: Use a well 
understood versioning 
scheme, such as the 

Maven versioning 
scheme, for your 

Docker tags.

11

Integration Test 
Environment
(Declaratively 

specified with e.g. 
Docker Compose)

12

Production Docker 
Registry

(User facing images 
are promoted to this 

registry)

UAT or Production 
Environment
(Declaratively 

specified with e.g. 
Docker Compose)

13

15

14

TIP: In terms of 
housekeeping 

keep your pipeline 
clean with spotify-

gc 

Figure 3: The Docker Pipeline At Jukt Micronics After Eight Months

Page 6 of 9



Figure 4: Establishing The Show And Tell Bridgehead

Figure 5: Moving Onto To Production Under Fire

would be incorrect to say that we had successfully
implemented DevOps at this stage. This is because a
fair portion of the infrastructure in-between the end
user and our containers were not managed using De-
vOps principles nor the DevOps team. In particular
practices such as infrastructure-as-code and also the
notion of temporary security credentials, as made
possible by for example the AWS Security Token
Service, were missing entirely. In short, we had no
less than three IT silos that remained.

Our approach to mitigating the impact of the
remaining silos was one of engaging individuals to
facilitate collaboration, rather than engaging the
corporate structure which was not something we
could realistically attend to in the short or long term.
We used base imaging as our engagement approach.

A key lesson learned when building this stage of
the pipeline was one of patience and gradually tak-
ing team members who happened to be in another
silo along for the journey. For example, although
it was suboptimal, having access to a specific set of
Docker Engine commands on upstream hosts and
a specific set of firewall rules being put in to place
was all we needed to auto-deploy from our contin-

uous integration server. We effectively learned to
accept the limitations in the short term and also
build confidence as we went along.

In terms of where we could have done things better,
as a blessing in disguise in the early production days
we did experience a significant outage. It was a
blessing in the sense that it exposed a number of
cultural issues as well as highlighting the fact that
not all had the basic Docker Engine experience and
skill that they needed.

5.3 Pipeline Mark 3 - On-board In-house
Expertise With Base Imaging

The final enhancement that we made to our basic
image propagation pipeline was both cultural and
technical.

We used Docker Engine base imaging as a means
of working with our database administrators to build
on popular open source database engine images pub-
lished to Docker Hub. This helped in terms of lever-
aging their experience and also serving as a means
of not only stimulating discussion but also encod-
ing best practices either in Dockerfiles or as version
controlled Markdown documentation.

Furthermore we worked with the operationally
oriented team members to build on Apache httpd
base images to route internal traffic.

Final enhancements made during this Mark 3
phase of our pipeline was proxying Docker Hub, with
Nexus 3, and also keeping our core build and dev
infrastructure clean with docker-gc[6].

In terms of on-boarding lessons learned, the main
lesson here was to not forget about our original,
measurable goal which was to go from commit to
production in the order of minutes while ensuring
high quality. The reason why this is so important
is because it helps challenge all concerned in terms
of their ways of working, which might not be com-
patible with DevOps as we have defined it and are
measuring it. Never lose sight of your overall goal
and never compromise on doing what needs to be
done to achieve it.

It is worth noting that during this phase we stuck
to our No More Consultants way of working and
believe that this helped with getting buy-in and also
building a team with skin in the game.

Page 7 of 9



6 Concluding Cultural Checkpoint -
Revisiting Our No. 8 Re-wired
Scorecard

Although, after eight months, we had achieved a fair
amount up to the point in time where we had built
what we like to call pipeline Mark 3, its important
to look back and subjectively give ourselves a score.

It is also important not to forget the definition of
DevOps before scoring because otherwise we might
end up scoring higher than what we should be doing.

DevOps is a set of practices intended to re-
duce the time between committing a change
to a system and the change being placed
into normal production, while ensuring high
quality.

In Table 4 we ended up, in my mind, with a score
of 2 out of 8 which is a significant improvement on
0.5 out of 8. The scores remained low overall since
I believed we still had a long way to go in each
category.

In terms of the cited definition of DevOps, this is
where we made the greatest gain in that deployment
to production now took in the order of tens of seconds,
whereas previously it could have taken days. We had
not quite started to measure the reduction in time
between committing a change and the deployment
of the change in to normal production. We had also
not started to distinguish between closely monitored
production and normal production.

To conclude, looking back, although our journey
was far from complete, in terms of subjective cultural
measures and some objective measures we were light
years ahead of where we were at the starting point.
We had also introduced containerisation gradually,
with baby steps, which looking back was a blessing.
From here orchestration and scheduling are likely to
be next ports of call.

References

[1] Parcell, Geoff. and Collison, Chris. (2014). No
More Consultants: We Know More Than We
Think Wiley, October 2009.

[2] Bridges, Jon. and Downs, David. (2014). No.
8 Re-wired - 202 New Zealand Inventions That
Changed the World PENGUIN BOOKS, pg 9.

[3] Steve McConnell Cargo Cult Software Engineer-
ing 2000: IEEE Software. http://sunnyday.mit.
edu/16.355/cargo-cult.pdf

[4] Len Bass, Ingo Weber, Liming Zhu DevOps :
a software architect’s perspective, First edition,
May 2015, Pearson Education Inc, ISBN 978-0-
13-404984-7

[5] Glass, Stephen. Former associate-editor at maga-
zine The New Republic that reported on the non-
existent software firm Jukt Micronics4. https:

//en.wikipedia.org/wiki/Stephen_Glass

[6] Spotify. Docker garbage collection of contain-
ers and images. https://github.com/spotify/
docker-gc

4Similarly the kiwi enterprise Jukt Micronics is non-existent.
I use this name as a generic replacement for an anonymous
enterprise.

Page 8 of 9

http://sunnyday.mit.edu/16.355/cargo-cult.pdf
http://sunnyday.mit.edu/16.355/cargo-cult.pdf
http://www.urbandictionary.com/define.php?term=jukt%20micronics&defid=2497255
https://en.wikipedia.org/wiki/Stephen_Glass
https://en.wikipedia.org/wiki/Stephen_Glass
https://github.com/spotify/docker-gc
https://github.com/spotify/docker-gc


Table 4: No.8 Re-Wired DevOps ScorecardTM - Culture At Jukt Micronics After Eight Months

FROM TO SCORE

Alone in an IT silo Collaborating with DevOps peers 0.25

Making a solution to solve my own silo’s problem Understanding the customer’s prob-
lem with DevOps practices as the
means

0.25

Making do with what’s at hand Using the best possible technology
from around the world

0.25

Distrusting other silos Sharing information with others and
mutually benefitting

0.25

Doing it all myself Working with specialists in design,
marketing, production, etc.

0.25

Holding onto the invention within my silo Letting the invention go out to be
criticised, commented on and added
to by others

0.25

Making it ’good enough’ Perfecting the design and function-
ality

0.25

Standing apart from the business and other IT silos Being open to enterprise-wide coop-
eration

0.25

Page 9 of 9


	Defining DevOps
	No. 8 Re-Wired Enterprise IT with DevOps
	Ground Zero
	Starting Culture - No. 8 Re-wired Scorecard
	DevOps Pipeline
	Pipeline Mark 1 - The Show And Tell Bridgehead
	Pipeline Mark 2 - Onto Production Under Fire
	Pipeline Mark 3 - On-board In-house Expertise With Base Imaging

	Concluding Cultural Checkpoint - Revisiting Our No. 8 Re-wired Scorecard

